Цель исследования: разработка методики скринингового обследования пациентов, направленной на раннюю дифференциальную диагностику злокачественных новообразований кожи посредством применения методов дерматоскопии совместно с оптоэлектронными средствами мобильной техники и алгоритмами классификации дерматоскопических изображений, основанных на методах машинного обучения.
Материалы и методы. Для реализации обнаружения злокачественных новообразований и отнесения их к соответствующей нозологической группе применяются методы и алгоритмы машинного обучения и оптического распознавания. Методы оптического распознавания используются в процессе анализа дерматоскопических снимков и обучения алгоритмов и моделей классификации. В качестве применяемых подходов машинного обучения выступают методы многоклассовой и бинарной каскадной двухэтапной классификации технологии машинного обучения, основанной на нейросетевой архитектуре и архитектуре визуальных трансформеров.
Результаты. В ходе экспериментальных оценок многоклассовой классификации (восемь типов злокачественных новообразований) определена наилучшая модель классификации с архитектурой визуального трансформера, характеризующего метриками Accuracy 0,932 и F-мера 0,891 на сформированном наборе данных, включая ISIC-2019 и собственный набор, содержащий 657 изображений. Бинарная каскадная двухэтапная классификация на меланоцитарные и немеланоцитарные новообразования имеет значения Accuracy и F-мера 0,954 и 0,948 (первый этап классификации) и на меланомы и невусы — 0,964 и 0,951 соответственно (второй этап классификации).
Заключение. Полученные количественные значения точности обнаружения злокачественных кожных новообразований разработанной методикой скринингового обследования позволяют рекомендовать внедрение многоклассовой классификации для первичного разделения большого объема дерматоскопических изображений пациентов по нозологическому признаку между профильными специалистами в процессе проведения массовый (выездных) профилактических осмотров, а внедрение каскадной бинарной классификации в условиях первичного приема с ограниченным доступом к профильным специалистам для дифференциации меланомы от других кожных новообразований. Разработанная методика скринингового обследования пациентов может быть внедрена в медицинскую практику в качестве системы поддержки принятия решений врача.